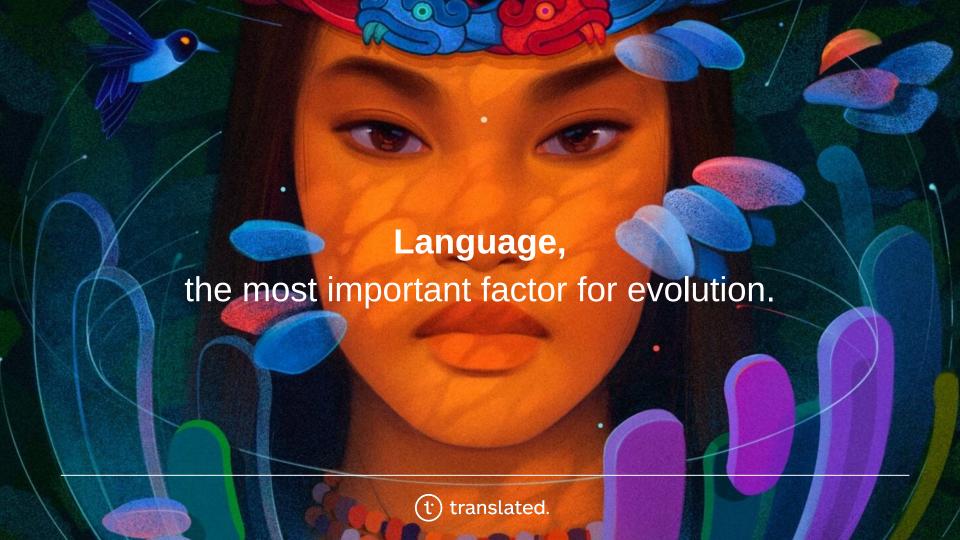


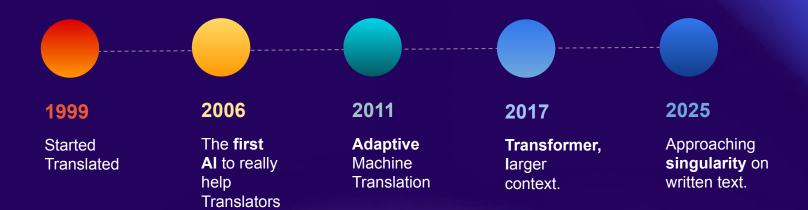
1.Humans and Language


The Role of Language

Key role of language in AI as a predictor of what will happen across the broader tech sector Why is **language** so important?

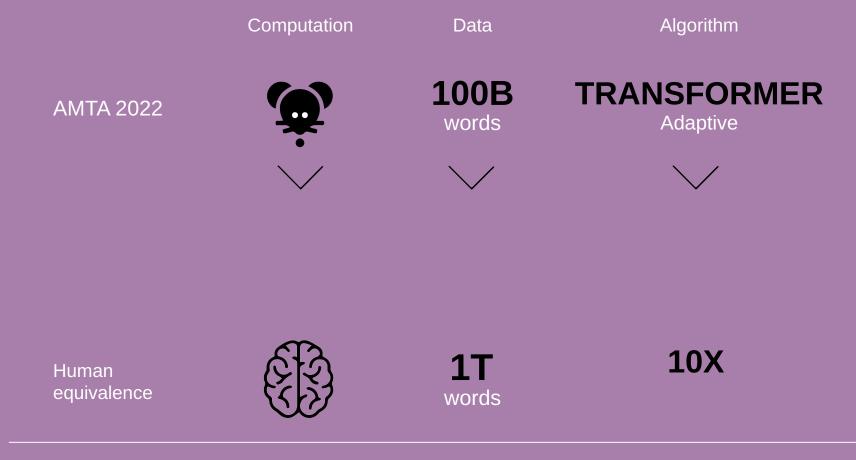
Even the **simplest biological** units have developed **motor control**.

(t) translated.

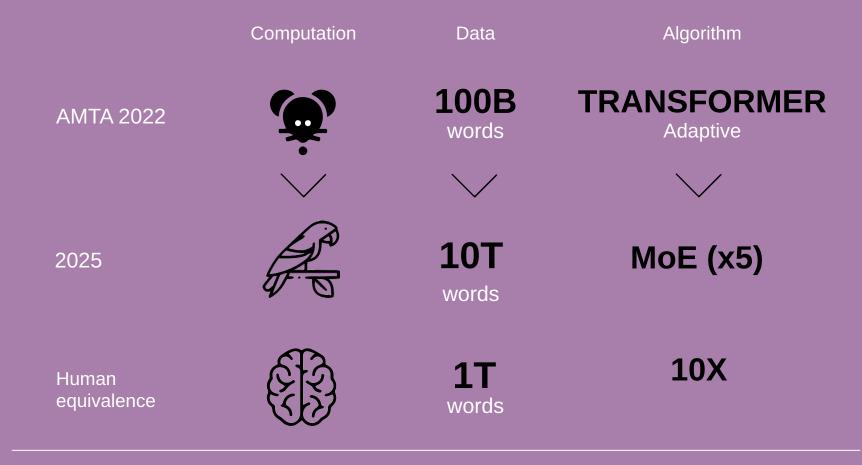


Understand and be understood

2.Evolution of Al



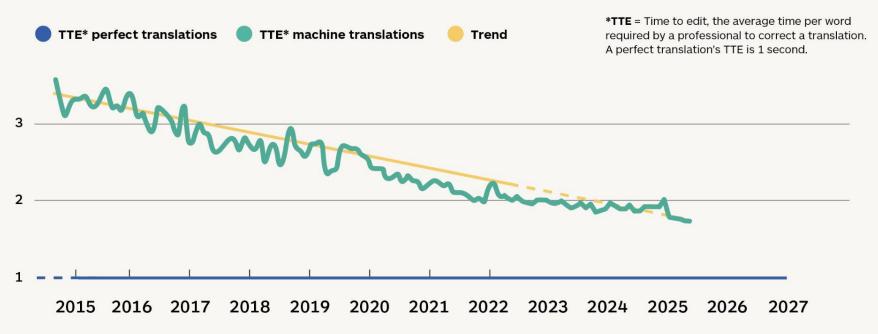
HCI in Language Translation



What is it happening in **language** now?

So that we can predict what is going to happen.

(t) translated.


(t) translated.

Progress to AI in Singularity

Seconds per word

(t) translated.

Measured using Time to Edit in machine translation.

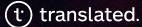
Source: Translated's data from 2B sentences edited by 136K top translators using Matecat and ModernMT.

Al Milestones

Al Milestones

Perception

Gen Al


Digital Agents Physical Agents

Perception

Computers recognize information.
Understand it.
Classify it.

Al Milestones

Perception

Gen Al

Digital Agents Physical Agents

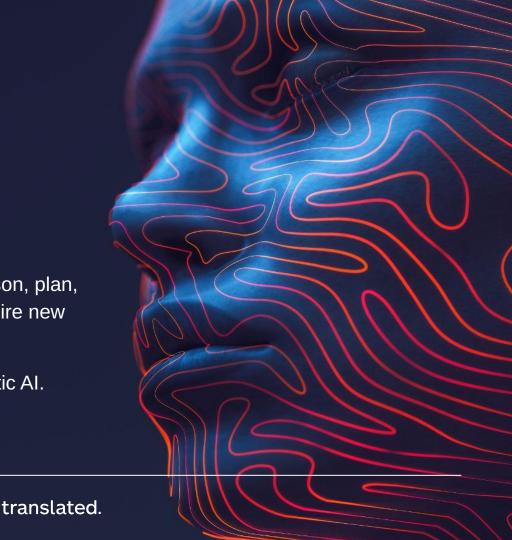
Generative Al

Multimodal, an AI able to learn both images and Language.

The ability of AI to be multimodal as well as able to translate and generate content enabled the Generative AI revolution.

Al Milestones

Perception


Gen Al

Digital Agents Physical Agents

Agentic Al in the Digital World

It's the ability to understand, perceive, reason, plan, solve problems step by step, explore, acquire new information, seek support, and use tools.

Today, all of this is made possible by Agentic AI.

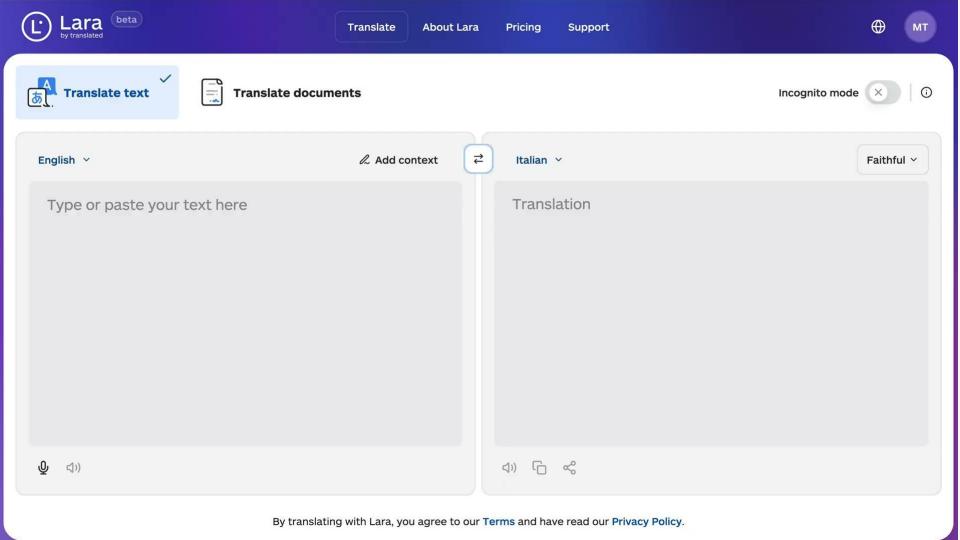
Al Milestones

Perception

Gen Al

Digital Agents Physical Agents

Al sensing the environment and generating motion



Impact on Translation

Translation Memories are becoming useless

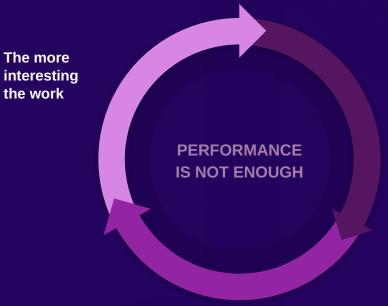
Context, Errors, Sync

What's new in Human Computer Interaction? It's trust.

Translation has a big latent demand

Polarization in Wealth

- Al risks amplifying inequalities between rich and poor.
- Access to AI tools = opportunity vs exclusion.
- Building inclusive products means fair access and design for all.


Empowering humans is not enough

Sense of Purpose

Al must align with human goals, ethics, and meaning.

Beyond efficiency: empowering creativity, education, sustainability.

Purpose-driven AI serves people and society.sign for all.

The more top translators stay

The more interesting the work, the more top translators stay with us, and the better the quality of the data for artificial intelligence. **Better quality data**

Market Size	Content Type	Tier 1 (Top 10 Langs)	Tier 2 (Extra 20 Langs)	Tier 3 (Extra 30 Langs)	Tier 4 (Extra 150 Langs)
~ \$0,3B	Conversational Chats, Support Target EPT: <20 Target Turnaround: <1s	Lara EPT (in/out): 2 / 2 Cost: \$0.0001 / word Turnaround: 1 sec	Lara EPT (in/out): 8 / 8 Cost: \$0.0001 / word Turnaround: 1 sec	Lara EPT (in/out): 20 / 20 Cost: \$0.0001 / word Turnaround: 1 sec	Lara + Light Review EPT (in/out): 50 / 20 Cost: \$0.05 / word Turnaround: Hours
~ \$1B	User Generated Content Reviews, Social, Product Descriptions, Knowledge Bases Target EPT: <20 Target Turnaround: Hours	Lara EPT (in/out): 8 / 8 Cost: \$0.0001 / word Turnaround: 1 sec	Lara EPT (in/out): 20 / 20 Cost: \$0.0001 / word Turnaround: 1 sec	Lara + Light Review EPT (in/out): 50 / 20 Cost: \$0.05 / word Turnaround: Hours	Lara + Mid Review EPT (in/out): 100 / 20 Cost: \$0.10 / word Turnaround: Hours
~ \$20B	General Content Technical Content Target EPT: <8 Target Turnaround: 48h	Lara + Mid Review EPT (in/out): 20 / 8 Cost: \$0.10 / word Turnaround: Hours	Lara + Deep Review EPT (in/out): 50 / 8 Cost: \$0.12 / word Turnaround: 24h	Lara + 2 Deep Reviews EPT (in/out): 100 / 8 Cost: \$0.16 / word Turnaround: 48h	Lara + 2 Deep Reviews EPT (in/out): 200 / 8 Cost: \$0.16 / word Turnaround: 48h
~ \$40B	Premium Content Marketing, Legal, UIs and other high investment content. Target EPT: <2 Target Turnaround: 72h	Lara + 2 Deep Reviews EPT (in/out): 20 / 2 Cost: \$0.16 / word Turnaround: 48h	Lara + 3 Deep Reviews EPT (in/out): 50 / 2 Cost: \$0.20 / word Turnaround: 72h	Lara + 3 Deep Reviews EPT (in/out): 100 / 2 Cost: \$0.20 / word Turnaround: 72h	Lara + 3 Deep Reviews EPT (in/out): 200 / 2 Cost: \$0.20 / word Turnaround: 72h

Perception

Solved

Gen Al

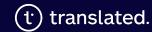
Hallucinations

Freshness

Physical Grounding

Digital Agents

Multimodality


Success Rate

Learn by doing Learning Parallelism Func. Connectivity

Physical Agents

Robots

Universal Modality

Universal Tokenization

Current tokenization is ambiguous and designed for text.

Processing any input from any sensor is a key feature to enable leveraging every unstructured past data and future interaction data.

Learning by Doing

Al today is trained on past data. We need to model learning on the job.

Parallel Reasoning

Today models reason sequentially via natural language. This is inefficient from a latency perspective and from a quality perspective. We need to move from simple expert routing (MoE) to deep interaction.

Example:

Italian: Solo 3 parole: Non sei solo.

English: Just 3 words: You are not alone.

A growth phase on a completely different scale.

Human Touch

(t) translated.

(t) translated.